
649

0195-928X/02/0500-0649/0 © 2002 Plenum Publishing Corporation

International Journal of Thermophysics, Vol. 23, No. 3, May 2002 (© 2002)

Convective Effects During Diffusivity Measurements
in Liquids with an Applied Magnetic Field

Y. Y. Khine,1 R. M. Banish,1, 2 and J. I. D. Alexander3

1 Center for Microgravity and Materials Research, VBRH E-39, University of Alabama in
Huntsville, Huntsville, Alabama 35899, U.S.A.
2 To whom correspondence should be addressed. E-mail: banishm@email.uah.edu
3 Department of Mechanical and Aerospace Engineering, Case Western Reserve University,

Cleveland, Ohio 44106, U.S.A.

Received September 19, 2001

Convective contamination of self-diffusion experiments with an applied magne-
tic field is considered using a two-dimensional axisymmetric model. Constant,
uniform, and an additional non-uniform heat fluxes are imposed along the
sidewall of the cylinder while constant heat loss occurs through the top and
bottom. In this model, due to a very small thermal Péclet number, convective
heat transfer is neglected, and the flow is steady and inertialess. Time-dependent
concentration is solved for various values of the mass Péclet number, Pem, (the
ratio between the convective transport rate and the diffusive transport rate) and
different magnetic field strengths represented by the Hartmann number Ha.
Diffusivities are obtained using the same algorithm used to extract diffusivity
values from the actual experimental data. Normalized values of these diffusivi-
ties vs. effective Pem are presented for different imposed temperature profiles. In
all cases, the diffusivity value obtained through the simulated measurement
increases as the effective Pem increases. The numerical results suggest that an
additional periodic flux, or ‘‘hot’’ and ‘‘cold’’ spots, can significantly decrease
the convective contamination in our geometry. The number of periodicity in
temperature does not have a significant impact on the diffusivity results.
Keeping the top wall slightly warmer than the bottom wall has no effect on the
diffusivities for this model.

KEY WORDS: convective contamination; liquid metals; magnetic field; mass
diffusion.



1. INTRODUCTION

During liquid self-diffusion experiments, a small non-uniformity in tem-
perature within the melt may drive a buoyant convection in the presence of
gravity (terrestrial experiments) or even with residual acceleration magni-
tudes characteristic of microgravity conditions. This convection can result
in erroneous values of the measured diffusivity. Verhoeven [1] emphasized
that any horizontal component of a density gradient in the liquid results in
spontaneous convection with no threshold. Since in most practical situa-
tions, particularly at high temperatures where the presence of a horizontal
temperature gradient is difficult to avoid, it has been a widespread practice
to keep the top wall of diffusion capillaries slightly warmer than the
bottom wall to produce a so-called ‘‘stabilizing’’ temperature gradient that
might reduce the magnitude of flow velocities caused by horizontal density
gradients.

Alexander et al. [2] showed that for three-dimensional (3D) time-
dependent transport in the presence of gravity with horizontal temperature
non-uniformities across the sample as low as 1 and 0.1 K, convective
transport rates in 1 and 3 mm diameter capillaries, respectively, can exceed
diffusive transport rates, and, thus, result in higher values of measured
diffusivities. Also, the addition of the top-warmer ‘‘stabilizing’’ temperature
gradient actually increased the overall transport in self-diffusion experi-
ments. Alexander and Banish [3] have presented the results of a combination
of numerical modeling and order-of-magnitude estimates of the sensitivity of
convective contamination to microgravity and low-gravity of self-diffusion
coefficient experiments.

Recently, some researchers [4–6] have applied magnetic fields to
suppress the buoyant convection in the liquid metals and semiconductors
since they have very large electrical conductivities. Youdelis et al. [7] dis-
cussed that at high magnetic field strengths, the diffusion process itself can
be significantly modified through the Lorentz body force acting on the ions
and electrons in the conducting liquids. Alboussiere et al. [8] found that
with Lorentz electromagnetic damping of convection and with resulting
reduced convection levels, the convective contribution to the effective mass
Péclet number is scaled as Hartmann number Ha−4.

In actual self-diffusivity experiments, measured diffusivity results that
deviate by less than 5 % from the (known) real value, D0, would be con-
sidered ‘‘acceptable’’ though not ideal. In self-diffusion experiments, tem-
perature gradients drive the buoyant convection responsible for erroneous
diffusivity measurements. The purpose of this paper is to quantitatively
estimate the magnitude of allowable temperature non-uniformities in the
liquid that will guarantee that measured diffusivity values lie within 5% of
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the actual value when the experimental system is subject to an axial mag-
netic field. To model the experiment, axisymmetric, time-dependent trans-
port due to a combination of steady flow and diffusion is considered.

In this basic model, a steady, uniform heat flux that produces a radial
temperature difference in the liquid is imposed on the sidewall of the
cylindrical container while uniform heat losses are imposed on the top and
bottom walls. Then, a steady, spatially-periodic heat flux is superimposed
on the sidewall of the cylinder to predict the effect of spatial temperature
variations which represent the localized hot and cold spots along the
sidewall. Note that the overall flux for this additional periodic condition is
zero. Simulated diffusivity results for two different initial conditions with
two different magnetic field strengths and five various temperature profiles
along the sidewall are presented in this paper. The effect of a top wall
slightly warmer than the bottom wall is also discussed.

2. PROBLEM FORMULATION

In this model, the liquid is assumed to be a Boussinesq fluid contained
in a closed vertical circular cylinder of length Z=30mm with an inside
radius R of 1.5 mm. Gravity acts downward along the cylinder axis while
a uniform axial magnetic field is applied in the opposite direction as in
Fig. 1a. The origin lies at the centerline (R=0) and z=Z/(2r). The iso-
picnic radioactive tracer is at the bottom of the cylinder at the beginning of
the measurements. The dimensionless model has the top and bottom limits
of z=10 and −10, respectively, while the vertical wall lies at r=1.

2.1. Thermal Problem

For sufficiently large values of magnetic field strength B, the magnetic
damping results in a characteristic ratio of convective to conductive heat
transfer (the thermal Péclet number, Pe=rchUR/l, where r is uniform
density, ch is the specific heat, U is a characteristic velocity, and l is the
thermal conductivity) is small; the dimensionless temperature in this case is
then governed by N2T=0. Therefore, in this model, we assume that con-
vective heat transfer is negligible (i.e., Pe° 1) and that a uniform heat flux
density is imposed along the vertical wall and constant heat losses through
the top and bottom walls of the cylinder with the possibility of an addi-
tional spatially-periodic heat flux of various amplitude and wavelength on
the vertical sidewall in some cases. With these assumptions, the energy
equation (N2T=0) is non-dimensionalized by R for length and 2DTr for
temperature, where DTr is the temperature difference between the centerline
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Fig. 1. Model diffusion capillary. Figure 1a presents the set up and
Figs. 1b–1f describe the dimensionless incoming heat fluxes for
Cases I through V.

and the vertical (side) wall and the dimensionless analytical solution for
temperature is

T(r, z)=s1 1
r2

2
−z22+s2I0(ar) cos(az) (1)

where a=np/10 and n is a known integer, s1 and s2 are set coefficients,
and I0 is a modified Bessel function of the first kind of order zero. The first
term on the right hand side of Eq. (1) represents the temperature distribu-
tion due to a uniform heat flux while the second term represents the tem-
perature distribution due to a spatially-periodic heat flux.
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2.2. Flow Problem
At sufficiently large values of B, the characteristic ratio of the electro-

magnetic body force to the inertial effect (the interaction parameter,
N=sB2R/(rU), where s is the electrical conductivity of the liquid) is very
large and, thus, the inertial terms in the Navier–Stokes equations become
negligible. In addition to the applied magnetic field produced by the magnet,
associated electric currents induce an additional magnetic field since the
materials considered here are electrically conducting. The characteristic ratio
of the induced to applied magnetic field strengths is the magnetic Reynolds
number, Rm=mpsUR, (where mp is the magnetic permeability of the liquid)
and this is very small for crystal growth processes and self-diffusion experi-
ments of liquid metals and semiconductors. Thus, neglect of the induced
magnetic field effect is justifiable in the model presented here.

Khine and Walker [9] determined the characteristic velocity for mag-
netically damped axisymmetric buoyant convection U=2rg0bDTr/(sB2),
where g0 is the gravitational acceleration (9.81 m · s−2) and b is the volume-
tric expansion coefficient for Boussinesq approximation, and this is used to
non-dimensionlize the velocity. The magnetic flux, reduced pressure (the
difference between the total pressure and the hydrostatic pressure) with
uniform density, the electric current density, and the electric potential are
non-dimensionalized using B, sUB2R, sUB, and UBR, respectively. The
dimensionless, inertialess equations governing the steady, axisymmetric
buoyant convection are then

N · v=0 (2a)

Np=Tẑ+j×ẑ+Ha−2N2v (2b)

N · j=0 (2c)

j=−Nf+v×ẑ (2d)

Here, Ha=BR(s/m)1/2, where m is the viscosity of the liquid, Eq. (2a) is
the conservation of mass, Eq. (2b) is the Navier–Stokes equation with a
buoyancy force and an electromagnetic body force, Eq. (2c) is the continu-
ity of electric current density j, and Eq. (2d) is Ohm’s law with an electric
potential function f. Cross-differentiating the r and z components of Eq. (2b)
to eliminate pressure p, and introducing a stream function, k(r,z) which
satisfies Eq. (2a), yields

vr=
1
r
“k

“z
(3a)

vz=−
1
r
“k

“r
(3b)
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Using Eqs. (3a) and (3b), the equation governing k for a composite core-
parallel layer solution where the axial derivative of the stream function is
much smaller compared to the radial derivatives in the viscous dissipation
becomes

Ha−2 3“
4k

“r4
−
2
r
“
3k

“r3
+
3
r2
“
2k

“r2
−
3
r3
“k

“r
4−“

2k

“z2
=s1r2+s2arI1(ar) cos(az) (4a)

after being multiplied with r where I1 is the modified Bessel function of the
first kind of order one. Here, the terms multiplied with Ha−2 represent the
viscous dissipation of the azimuthal vorticity, “

2
k

“z2
is the electromagnetic

suppression of this vorticity, and the terms on the right side are the pro-
duction of this vorticity due to the rotational part of the buoyancy force.
The boundary conditions are

k=
“k

“r
=0, at r=1 (4b)

k=0, at z=−10, 10 (4c)

Condition (Eq. (4b)) is simplified by multiplying with (1−z2)−1/2 T2P(z/10)
where T2P is the even Chebyshev polynomial and by integrating from z=0
to 10. Since the Chebyshev polynomials are orthogonal, the only term
remaining in the sum of M is the term for P=M where P and M are
numbers of terms in Chebyshev polynomials in z. For various values of Ha,
Eq. (3) is solved using a Chebyshev spectral collocation method [10] where
the collocation points are at r=cos[Ip/(2NR)] and z=cos[Kp/(2NZ)],
where I and K are indices for collocation points in r and z, respectively, and
NR and NZ are total number of collocation points in r and z, respectively. In
this case, k is defined as even functions of Chebyshev polynomials in r and z.

k(r, z)=r2 C
NR

L=0
C
NZ

M=0
ALMT2L(r) T2M 1

z
10
2 , for 0 < r [ 1, 0 [ z [ 10

(5)

Here, ALM are unknown coefficients of k and T2L and T2M are even
Chebyshev polynomials in r and z, respectively.

2.3. Diffusion Problem

The dimensionless axisymmetric governing equation for diffusion is

“c
“t
+Pemv ·Nc=N2c (6a)
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Here, t is normalized by the diffusion time scale (R2/D0) and c is scaled by
the initial concentration C0. The first term on the left side of Eq. (6a) is the
rate of change of concentration with time, the second term represents the
mass transport due to convective effects while N2c, on the right side, repre-
sents pure diffusion. Pem=UR/D0 is the characteristic ratio of convective
effects to diffusive effects in the process. Here, U is the calculated charac-
teristic velocity and differs from case to case. Since there is no mass trans-
fer across any boundary, the boundary conditions are

“c
“r
=0, at r=1 (6b)

“c
“z
=0, at z=−10,10 (6c)

Equation (6a) is solved for different Pem with conditions (6b, 6c) using a
Chebyshev spectral collocation method for spatial discretization as in the
flow problem while conventional finite-difference is used for temporal
discretization. Equation (6) is cast into M1 f DLM(t+Dt)=M2 f DLM(t)
where M1 and M2 are time independent matrices which consist of flow
variables and Chebyshev polynomials and DLM are unknown coefficients
of c. In this case, the concentration c is defined in terms of Chebyshev
polynomials as

c(r, z, t)= C
NR

L=0
C
2 fNZ

M=0
DLM(t) T2L(r) TM 1

z
10
2 (7)

Note that, in self-diffusion of a single-component system, the liquid
density is independent of the ‘‘tracer’’ concentration, and thus, the equa-
tions of motion, Eqs. (4), need not be solved simultaneously with the dif-
fusion equation, Eq. (6). We first solve for the velocity field and then use
the results in Eq. (6) which greatly simplifies the computations with no loss
of accuracy.

In this paper, two initial conditions for c are considered where both
are common practices in self-diffusion experiments. The first one is that the
tracer forms a thin layer at the bottom of the cylinder, and it is
represented by

c(r, z, t=0)=exp(−a(z+10)2) (8a)

where a=3 and dramatically to c % 0 around z=−9.
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The second initial condition is that the tracer occupies one half of the
cylinder which is represented by

c(r, z, t=0)=0.5 f [1− tanh(az)] (8b)

where a=10. This initial condition gives c=1 for z=−10 to z < 0, c=0.5
at z=0, and then decreases dramatically to c=0 for z > 0.

The simulated measurements (or output diffusivities D) are computed
from the resulting time traces of concentration through a straight line fit in
the form,

ln[c1(t)−c2(t)]=constant−1p
2D
Z2
2 t (9)

which is known as Codastefano [11] or Harned [12] technique. Here,
c1 and c2 are located at z=Z/6 and 5Z/6 along the length of the cylinder,
respectively, and the constant depends on the concentration profile c(z) at
t=0 and it does not enter explicitly into the D-evaluation. This methodol-
ogy has been refined in our laboratory through extensive experimental and
numerical modeling [3, 13–16].

Only the region between z=0 and 10 is considered in the flow
problem due to symmetry at z=0. Fifteen collocation points are needed in
the radial direction while 40 points are used in axial direction. In the diffu-
sion problem, the total number of collocation points in r is 15 and that in z
is 80 since the entire cylinder is considered. Liquid indium with b=1.02×
10−4 K−1, r=6.64×103 kg · m−3 and s=3.02×106 S · m−1 [17] is used as a
model fluid. A time step size of 0.1 or 0.2 was used for time integration,
and several different Pem are considered for each Ha. A self-diffusivity
value of D0=1.48×10−5 cm2 · s−1 was used as the input. Two different
Hartmann numbers are considered. For liquid indium these correspond to
magnetic field strengths of 0.218 T (Ha=25) and 0.873 T (Ha=100).

The numerical model was verified by considering an analytical solu-
tion at high Ha where the viscous effect is neglected, and the two results
agree very well. Also, the diffusion results are verified by checking the total
tracer concentration in the cylinder at certain time steps.

3. RESULTS AND DISCUSSION

The results for five different incoming heat fluxes (see Figs. 1b to 1f )
are presented in this section. Case I presents self-diffusion with a radial
temperature difference only as the driving force in the liquid due to the
steady, uniform heat flux along the sidewall. Cases II through V present
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self-diffusion with various magnitude of uniform heat flux and superim-
posed, steady, spatially-periodic heat flux with various amplitude and
wavelength along the sidewall (i.e., localized hot and cold spots along the
sidewall in addition to the radial temperature difference in the liquid). The
desired incoming heat fluxes for Cases I through V are obtained by adjust-
ing s1, s2 and a in Eq. (1). Table I presents summarized results for those
five different cases.

Case I. s1=1 and s2=0 in Eq. (1)

In this case, a uniform heat flux of density 1 that produces a radial
temperature difference in the liquid is applied through the vertical wall with
uniform heat loss through the top and bottom end walls as in Fig. 1b. The
isotherms show symmetry from z=0 plane, and are slightly deviated from
the horizontal, and decrease toward the top and bottom walls. The stream-
lines for both Ha circulate in counterclockwise motion beginning near the
vertical wall.

To illustrate typical flow geometries, Figs. 2 and 3 show contours of
the radial velocity component vr and axial velocity component vz for
Ha=100 (B=0.873 T). vr is equal in magnitude and opposite in direction
with a mid-plane at approximately z=0. The maximum and minimum
values of vr are 2.89 near the bottom wall and −2.89 near the top wall,
respectively. In Fig. 3, vz increases from the centerline toward the vertical
wall while vz=0 occurs near r=0.6. The maximum vz is 27.2 and occurs
near the vertical wall, and the minimum value is –75.8 and occurs near the
origin. Increasing the magnetic field, from 0.218 to 0.873 T, causes the
single convection cell to be squeezed towards the center of circulation.
|vr max |/|vz max | decreases from 0.114 to 0.038 for Case I. A similar effect is
seen for Case II (below) where there is again only a single flow cell. For the
other three cases, which have multiple stacked cells (Cases III, IV, and V
have 5, 5, and 3 cells, respectively) this ratio stays essentially the same as
the magnetic field increases.

These dimensionless velocity results are multiplied with the corre-
sponding characteristic velocity U for a particular Pem in order to obtain
the dimensional velocities of interested Pem. Some important results for
Cases I through V are included in Table I. Given a known Ha (magnetic
field strength) and a Pem (rate of convective to diffusive transport), one can
determine the negligible temperature non-uniformity for that particular set
of Ha and Pem, or vice versa, from Table I.

Both initial conditions (Eqs. (8a) and (8b)) where the tracer forms a
thin layer and the tracer occupies one half of the cylinder, respectively,
were used in separate calculations for Ha=25 and 100. The characteristic
diffusion time is 1520 s, and, accordingly, values of Pem between 0 and 4
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Table I. Summary of Results for Cases I to V

DTr |vr max | |vz max | U effective D×105

(K) (cm · s−1) (cm · s−1) (cm · s−1) Pem (cm2 · s−1)

Case I. s1=1 and s2=0 in Eq. (1)

B=0.218 T,Ha=25

0.00107 7.34 × 10−6 6.42 × 10−5 9.87 × 10−6 0.651 1.49
0.00373 2.57 × 10− 5 2.25 × 10− 4 3.46 × 10− 5 2.28 1.55
0.0107 7.34 × 10−5 6.42 × 10−4 9.87 × 10−5 6.51 1.99
0.0426 2.94 × 10−4 2.57 × 10−3 3.95 × 10−4 26.04 9.57

B=0.873 T,Ha=100

0.00171 2.85 × 10−6 7.48 × 10−5 9.87 × 10−7 0.758 1.49
0.00501 8.35 × 10− 6 2.19 × 10− 4 2.89 × 10− 6 2.22 1.55
0.0171 2.85 × 10−5 7.48 × 10−4 9.87 × 10−6 7.58 2.11
0.0854 1.43 × 10−4 3.74 × 10−3 4.93 × 10−5 37.9 16.0

Case II. s1=s2=1 and n=3 in Eq. (1)

B=0.218 T,Ha=25

0.00107 5.92 × 10−6 7.56 × 10−5 9.87 × 10−6 0.766 1.49
0.00373 2.07 × 10− 5 2.65 × 10− 4 3.45 × 10− 5 2.68 1.55
0.0107 5.92 × 10−5 7.56 × 10−4 9.87 × 10−5 7.66 1.99

B=0.873 T,Ha=100

0.00171 2.83 × 10−6 7.64 × 10−5 9.87 × 10−7 0.774 1.49
0.00548 9.07 × 10− 6 2.45 × 10− 4 3.16 × 10− 6 2.48 1.55
0.0171 2.83 × 10−5 7.64 × 10−4 9.87 × 10−6 7.74 2.12

Case III. s1=0.01, s2=1, and n=3 in Eq. (1)

B=0.218 T,Ha=25

0.00533 8.78 × 10−6 6.41 × 10−5 4.93 × 10−5 0.652 1.49
0.0249 4.11 × 10− 5 3.00 × 10− 4 2.31 × 10− 4 3.04 1.55
0.0639 1.05 × 10−4 7.70 × 10−4 5.92 × 10−4 7.82 1.84

B=0.873 T,Ha=100

0.0427 8.46 × 10−6 6.04 × 10−5 2.47 × 10−5 0.612 1.49
0.171 3.38 × 10− 5 2.42 × 10− 4 9.87 × 10− 5 2.45 1.55
0.684 1.35 × 10−4 9.67 × 10−4 3.95 × 10−4 9.79 2.2

Case IV. s1=0.001, s2=1, and n=3 in Eq. (1)

B=0.218 T,Ha=25

0.00533 8.78 × 10−6 6.17 × 10−5 4.93 × 10−5 0.624 1.49
0.0262 4.31 × 10− 5 3.03 × 10− 4 2.42 × 10− 4 3.07 1.55
0.0639 1.05 × 10−4 7.40 × 10−4 5.92 × 10−4 7.50 1.84
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Table I. (Continued)

DTr |vr max | |vz max | U effective D×105

(K) (cm · s−1) (cm · s−1) (cm · s−1) Pem (cm2 · s−1)

B=0.873 T,Ha=100

0.0427 8.61 × 10−6 5.06 × 10−5 2.47 × 10−5 0.513 1.49
0.184 3.71 × 10− 5 2.18 × 10− 4 1.06 × 10− 4 2.21 1.55
0.513 1.03 × 10−4 6.07 × 10−4 2.96 × 10−4 6.15 1.87

Case V. s1=0.01, s2=1, and n=2 in Eq. (1)

B=0.218 T,Ha=25

0.0107 1.04 × 10−5 8.39 × 10−5 9.87 × 10−5 0.850 1.49
0.0426 4.14 × 10− 5 3.35 × 10− 4 3.95 × 10− 4 3.40 1.55
0.107 1.04 × 10−4 8.39 × 10−4 9.87 × 10−4 8.50 1.86

B=0.873 T,Ha=100

0.0854 1.00 × 10−5 6.91 × 10−5 4.93 × 10−5 0.700 1.49
0.222 2.60 × 10− 5 1.80 × 10− 4 1.28 × 10− 4 1.82 1.55
0.854 1.00 × 10−4 6.91 × 10−4 4.93 × 10−4 7.00 2.26

are considered here. At t=0.1 (i.e., 152 s in real time) for Ha=25 and the
initial condition Eq. (8a), the radial average concentration curves for
Ha=25 and various Pem are indistinguishable. At t=1, the results for
Pem > 1 begin to show a faster evolution of the concentration profile than
for Pem < 1. Figure 4 presents the radial average concentration at t=10
for various Pem. As one would intuitively expect, for Pem < 1, the c(z)

Fig. 2. Contours of vr for Case I: Ha=100;
maximum vr=2.89; minimum vr=−2.89.
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Fig. 3. Contours of vz for Case I: Ha=100;
maximum vz=27.2; minimum vz=−75.8.

plots are nearly identical. In contrast, the contours for Pem=4 are almost
fully diffused. Thus, we see the effect of convective contamination on dif-
fusivity measurements. At t=100, the Pem=2 curve shows essentially
uniform c(z).

For Ha=100 with the initial condition (Eq. (8a)), the radial average
concentration curves for Pem > 1 show a faster decay rate (and, thus, will
yield a higher measured diffusivity) than the curves corresponding to

Fig. 4. Radial average concentration for Ha=25 at t=10 with radioactive
tracer at the bottom of cylinder at t=0.
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Fig. 5. Radial average concentration for Ha=100 at t=10 with radioactive
tracer at the bottom of cylinder at t=0.

Pem < 1 at t=0.1. At t=2, both Pem=2 and 4 curves are at steady state
while the Pem=1 curve is approaching to steady state. Figure 5 presents
the radial average concentration at t=10 for Ha=100 with initial condi-
tion (8a). Here, the radial average concentration curves for Pem=1, 2, and
4 are at steady state while Pem=0.5 is approaching to steady state while
the rest are still decaying. At t=100, the results for Pem < 0.1 are still
decaying while the rest are at steady state.

Both initial conditions, Eqs. (8a) and (8b), give the same diffusivity
results for both Ha’s and the various Pem. In each case, the effect of convec-
tion is quite obvious by considering the effective Pem, which is Pem |vmax |.
Figure 6 presents the diffusivity vs. effective Pem for Ha=25 and 100. For
both Ha, the results lie on one curve that bows upward as the effective Pem
increases. From the results, we can see that the convective effect is extremely
large for a larger effective Pem. For effective Pem < 2, the predicted con-
vective effect in self-diffusivity measurements (i.e., difference in diffusivity
from D0) is less than 5 % for both Ha=25 and 100. The allowable driving
force DTr for Ha=25 is about 0.00373 K while that for Ha=100 is about
0.00501 K to prevent convective contamination in excess of 5 %.

Case II. s1=s2=1 and n=3 in Eq. (1)

In this case, the uniform heat flux is the same as in Case I which pro-
duces a radial temperature difference in the liquid while a periodic flux
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Fig. 6. Diffusivity vs. effective Pem for Case I.

with an amplitude of 0.495 is superimposed at the sidewall to produce the
localized periodic temperature variation effect. Here, n=3 represents the
number of periodicity in the non-uniform heat flux. The maxima of the
periodic flux occur at z=−6.67, 0 (mid-plane), and 6.67 while the minima
occur at z=−10 (bottom wall), −3.33, 3.33, and 10 (top wall). So, the top
and bottom walls, z=Z/6 and 5Z/6 are slightly cooler than the rest of the
cylinder. The isotherms in this case are similar to those in Case I.

The patterns of flow for both Ha are similar to those in Fig. 2 except
the contours have a distinct axial waviness due to the presence of periodic
temperature at the sidewall. For Case II, the diffusivity results are plotted
in Fig. 7 for both values of Ha. Again, the two curves bow upward as the
effective Pem increases. The curve for Ha=100 is slightly higher than that
for Ha=25. The difference is more obvious at a larger effective Pem. For
the diffusivity results of less than 5 % deviation from D0, the allowable DTr
for Ha=25 is 0.00373 K and that for Ha=100 is 0.00548 K. Case II
results are very close to those of Case I. The spatially-periodic temperature
along the sidewall does not affect the diffusivities significantly although the
presence is observed in the flow pattern.

Case III. s1=0.01, s2=1, and n=3 in Eq. (1)

As shown in Fig. 1d, the uniform heat flux with a magnitude of 0.01
(i.e., 100 times smaller than that in Case I) and a spatially-periodic flux
with an amplitude of 0.495 (same as in Case II) are imposed at the sidewall.
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Fig. 7. Diffusivity vs. effective Pem for Cases II, III, IV and V.

In other words, the radial temperature difference in the liquid is reduced 100
times while keeping the superimposed periodic temperature profile unchanged.
The isotherms show symmetry from z=0 plane, and are deviated slightly
from the horizontal. The streamlines for both Ha=25 and 100 are arranged
as 5 vertically stacked cells with a counterclockwise circulation at the top
wall. The maximum dimensional radial and axial velocities for some Pem are
presented in Table I along with corresponding diffusivities.

For Case III, the consequences of the magnetic field for transport can
be seen from the diffusivity vs. the effective Pem shown in Fig. 7. For
both Ha, the curves bow upward as the effective Pem increases. The effect
of convection on the measured diffusivity is more prominent at a larger
effective Pem. Also, the diffusivity curve for Ha=100 lies above the curve
for Ha=25. For less than 5 % deviation from D0, the driving DTr for
Ha=25 is about 0.0249 K while for Ha=100, it is 0.171 K. Thus, Case III
suggests that reducing the radial temperature gradient in the liquid by 100
times from its original value (as in Case I) has a tremendous effect on the
diffusivity results for this model. The effect is more prominent at higher Ha
for this case (i.e., at stronger magnetic field strength).

Case IV. s1=0.001, s2=1, and n=3 in Eq. (1)

Here, the uniform heat flux which produces a radial temperature
difference in the liquid is further reduced to a magnitude of 0.001 (i.e.,
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10 times less than that in Case III and 1000 times less than that in Case I)
while keeping the periodic temperature profile unchanged as in Cases II
and III. For both Ha, the streamlines form five cells between the top and
bottom walls. The diffusivity vs. effective Pem for Case IV is shown in
Fig. 7 for both Ha. As in the previous case, the two curves bow upward as
the effective Pem increases, and the curve for Ha=100 is higher than that
for Ha=25, especially at larger effective Pem. The allowable DTr in this
case for Ha=25 is 0.0262 K while that for Ha=100 is 0.184 K which is a
slight improvement from those in Case III. Thus, reducing the magnitude
of radial temperature gradient by 10 times from Case III does not result in
tremendous changes in diffusivity results.

Case V. s1=0.01, s2=1, and n=2 in Eq. (1)

This case is the same as Case III except n=2 here so that the
isotherms decrease and increase two times alternatively in between the top
and bottom walls (i.e., the periodicity is 2 here). The uniform flux which
produces the radial temperature difference is 100 time smaller than that in
Case I. The maxima of spatially-periodic flux occur at z=−10 (bottom
wall), 0 (mid-plane), and 10 (top wall) with a magnitude of 0.207 while the
minima occur at z=−5 and 5. So, the top and bottom walls and the mid-
plane are slightly warmer than the rest of the cylinder.

For Ha=100, there are three negative and positive circulations. The
diffusivities vs. effective Pem for Case V are plotted in Fig. 7 for both Ha.
The curve for Ha=100 is higher than that for Ha=25 and the convective
effects are more obvious at larger effective Pem. In this case, the allowable
temperature non-uniformity DTr for Ha=25 is 0.0426 K and that for
Ha=100 is 0.222 K. The results are close to those of Case III with an
improvement in sensitivity of allowable temperature for the same magnetic
field strength.

Since keeping the top wall of diffusion capillary slightly warmer than
the bottom wall is a common way to reduce the convection from the
horizontal density gradients, the effect of DTz in addition to DTr is con-
sidered in this paper. Without an applied magnetic field, an axial tempera-
ture difference leads to radial temperature gradients through the convection
of high and low temperatures with the upward and downward flows, which
suggest that convective heat transfer is not negligible in the problem.
However, with an applied magnetic field, the effective Pem for our model
results in Pe < 0.026 for Ha=25 and Pe < 0.303 for Ha=100 for the
temperature distribution in Eq. (1). These small values of Pe suggest that
convective heat transfer is negligible in the energy equation and thus such
assumption in the thermal problem of our model is verified. Therefore, for
the simple cases described here, keeping the top wall warmer than the
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bottom wall has no effect on the measured diffusivity. This is because the
buoyant convection in this case is driven only by radial gradients, that in
the case examined here, are not changed significantly. In fact, in some cases
they may be enhanced or diminished, depending on the explicit nature of
the actual heat transfer conditions.

4. CONCLUSIONS

The use of an axial magnetic field to offset the detrimental effects of
convection on diffusivity measurements in liquid metals has been examined
using a numerical model. Our goal was to determine what magnetic field
strengths would be necessary given various temperature non-uniformities to
ensure that convective transport was less than 5 % of the diffusive. Two
different flow patterns were observed for the various imposed temperature
non-uniformities. For a uniform heat flux along the sidewall that produces
a radial temperature difference in the liquid, the streamlines form a coun-
terclockwise motion. For a spatially-periodic heat flux which produces the
localized hot and cold spots on the vertical wall, the flow is arranged as
vertically stacked cells and the number of cells depends on the periodicity
of the temperature profile due to periodic flux.

In all cases, the value of the simulated diffusivity increased with
increasing effective Pem (i.e., with increasing temperature difference, and,
thus, convective velocity magnitude). The dependence of the transport
conditions on the nature of the thermal boundary conditions was such that
for a uniform heat flux along the sidewall which produces a radial temper-
ature difference in the liquid, the diffusivity vs. Pem were indistinguishable
for Ha=25 and 100. The diffusivities for Ha=100 were higher than those
for Ha=25 in the presence of a periodic temperature profile produced by a
periodic heat flux superimposed on a uniform heat flux (Cases II, III, IV,
and V). For Ha=25, the allowable temperature non-uniformities DTr for
Cases I through V range from 0.00373 to 0.0426 K, and that for Ha=100
ranges from 0.00501 to 0.222 K.

Case I which is uniform heat flux only (i.e., the radial temperature
difference in the liquid is the only driving force) seems to be the most sen-
sitive while Case V (when the uniform heat flux that produces radial tem-
perature difference in the liquid is reduced 100 times that of Case I and the
periodic temperature profile produced by a non-uniform flux with the
periodicity of 2 is superimposed) is the least sensitive among five different
conditions considered in this model. From the results, one can conclude
that a particular temperature profile at the sidewall (produced by a com-
bination of uniform and non-uniform heat fluxes) is required to result in
desired diffusivities (i.e., to operate within the allowable temperature
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non-uniformities) in self-diffusion experiments for this numerical model.
For a fixed value of effective Pem, DTr increases with increasing Ha (the
magnetic field strength). Thus, stronger magnetic fields can tolerate a
stronger driving force DTr in self-diffusivity measurements for same con-
vective conditions. Keeping the top wall of the cylinder warmer than the
bottom wall was found to have no effect on the convective contamination
during the self-diffusivity measurements for this model.
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